AlVin  1.0
A C++ implementation of the Vinberg's algorithm for Q, Q( sqrt(d) ) and Q( cos(2 pi / 7) )
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 12]
 NEigen
 CNumTraits
 CAlgebraicIntegerParent class for rational, quadratic and rc7 integers
 CAlVinMain class for AlVin
 CAlVinFractionThis class represents one fraction x0^2 / (e,e)
 CAlVinFractionsThis class represents a set of possible fractions x_0^2 / (e,e) We generate series of the type: (x0 + y)^2 / (e_max, e_max), ..., x0^2 / 1
 CAppMain class
 CGraphInvolution<
 CInfiniteNSymetriesTry to find integral symmetries of the polyhedron which do not have any common fixed point inside the hyperbolic space. If success: the form is not reflective
 CInvariantsQFComputation of the commensurability of a quadratic form over the rationals
 CNotReflectiveCreate systems of equations to test the non-reflectivity of a quadratic form defined over Z
 CNotReflective_Graph<
 CNumTraits< Rational< QuadraticIntegerBig ><
 CNumTraits< Rational< RationalInteger ><
 CNumTraits< Rational< RCyclotomic7Integer ><
 CQuadraticIntegerQuadratic integers
 CQuadraticInteger_AlVinAlVin for quadratic integers
 CQuadraticInteger_InfiniteNSymetriesTo find integral symmetries of the space
 CQuadraticInteger_VFsEnumeration of fractions
 CQuadraticIntegerBigQuadratic integers with bigint components
 CRationalIntegerRational integers
 CRationalInteger_AlVinFind the vectors for rational integers
 CRationalInteger_InfiniteNSymetriesTo find integral symmetries of the space
 CRationalInteger_NotReflectiveTry to create systems of equations to show that the rational quadratic form is not reflective
 CRationalInteger_VFsEnumerations of fractions
 CRCyclotomic7IntegerRC7 and their operations
 CRCyclotomic7Integer_AlVinAlVin for RC7
 CRCyclotomic7Integer_InfiniteNSymetriesTo find integral symmetries of the space
 CRCyclotomic7Integer_VFsEnumerations of fractions
 Csignificant_decimals_impl< Rational< QuadraticIntegerBig ><
 Csignificant_decimals_impl< Rational< RationalInteger ><
 Csignificant_decimals_impl< Rational< RCyclotomic7Integer ><